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OBJECTIVES 

To carry out fundamental research investigations involving the nonlinear wave propa- 

gation that arises in physically important systems, in particular: nonlinear optics, fluid 

dynamics, ferro-magnetic systems and related issues such as inverse scattering. 

ACCOMPLISHMENTS/NEW FINDINGS 

i)   Nonlinear Optics: 

One of the most exciting achievements in the field of nonlinear optics has been the 

development of optical soliton communication systems which are capable of high speed data 
transmission. In thin optical fibers the fiber can support localized pulse/soliton propagation 

in the anomalous-dispersion regime. It is well-known that the nonlinear Schrödinger equation 

(NLS) governs the propagation of such waves. The NLS equation supports multisoliton 

solutions. In order to deal with the realistic technological application, the NLS model is 

modified by incorporating damping and amplifiers. 
Single channel systems supporting single soliton waves involve communication systems 

in which the solitons are widely separated and there is no possibility of mutual soliton 



interactions. Laboratory demonstrations have already proved that such systems are capable 

of effectively transmitting data at relatively high rates. However, for future communication 

systems, researchers must develop systems capable of significantly higher data rates. Towards 

this end an effective multisoliton based system, capable of rapidly transmitting data in 

numerous wavelength channels, is needed. Such systems are usually referred to as wavelength 

division multiplexed (WDM) soliton systems. 
Our research is aimed at the study of multisoliton interactions in nonlinear optics. With 

regard to soliton based communication systems, we have developed an effective theory de- 

scribing soliton interactions in both physical and frequency space. 
In our first papers we analyzed multisoliton interactions in an ideal fiber; i.e. soliton 

interactions in the NLS equation. In general, the formulae are complicated and unwieldy. 

However, in the limit of large frequency separations, which is the physically relevant limit, 

the analysis greatly simplifies. We found that solitons always remain widely separated in 

frequency space, even when they interact strongly in physical space. Numerically we have 

observed and confirmed this phenomena. The solitons do remain widely separated in Fourier 

space, even when the frequency separation is, numerically speaking, moderate. Consequently 

this limit is expected to be effective and useful in physical environments; in fact, this is the 
parameter regime which is currently being used in laboratory experiments. See also figures 

1-2 where this situation is clearly depicted. Figure 1 represents a typical soliton interaction 

in physical space and figure 2 illustrates the interaction in frequency (i.e. Fourier transform) 

space at a typical value of the parameters relevant to the asymptotic theory. Note that even 

while the solitons interact strongly in physical space, the interaction only results in slight 

frequency modifications in Fourier space. 
Subsequently we discovered that significant perturbations can be generated in a different 

frequency channel from the individual solitons In fig 2 note the small bumps in the adjacent 

frequency channels). We found that the perturbations in this new frequency channel are lo- 

cated in specific frequency regimes, and that these new perturbations are excited in precisely 

the frequency regimes associated with four wave mixing interactions (FWM) contributions. 
We have subsequently developed a comprehensive theory of FWM and multisoliton inter- 

actions. It should be noted that, in fact, such a situation is generic to any soliton system 

which has underlying carrier waves. Hence NLS type systems (and vector NLS systems) can 

exhibit such a phenomenon, but Korteweg-deVries type systems, which do not have carrier 

waves associated with them, will not. 
In the ideal fiber we show that as solitons interact, the FWM contributions grow from a 

zero background and then decay back to zero. A typical situation is depicted in figs 3-5 [from 

our paper on FWM in ideal fibers—see paper #17 in the 'publications accepted in journals' 



section of this report]. The figures show the solitons as they interact in physical space (fig 

3) and the corresponding results in frequency space (fig 4). As in fig 2 above, note the small 

frequency contributions in fig 3 that grow and decay in the adjacent frequency channels to 

the main solitons. In the inset figure of fig 3 these small contributions are magnified and the 

numerical (solid line) and our analytical (dashed line) theory are compared—with excellent 

agreement demonstrated. We have also shown that whenever the FWM contributions are 

located on a main soliton frequency channel, there is a particularly significant effect on the 

perturbation to the soliton frequency. In an ideal fiber, i.e. governed by the pure NLS theory, 
the FWM contributions grow and then decay. However our results indicate that this will 

not be the situation in realistic systems. 
We subsequently studied the NLS equation with damping and amplification present. We 

have developed a detailed analytical theory describing the effects of multisoliton collisions 

and, in particular, the effects of FWM. Our analytical results are confirmed by extensive 
numerical simulations by us as well as by well-known scientists in this field (J. Mollenauer 

and colleagues). The essential point is the following. In realistic systems, damping must 

be included. Amplifiers are placed at periodic intervals in order to compensate for the 

damping. It turns out that the amplifiers can and do resonate with the FWM contributions. 

The result is that FWM signals are magnified; they grow and then saturate to become a 

nontrivial state. In figure 6-7 (figure 6-7 are from our paper on FWM with damping and 
amplification present; see paper #12 in 'publications accepted in journals' section of this 

report), a typical situation is iUustrated: fig 6 is the physical space description and fig 7 is 
the corresponding frequency space description. The difference from the ideal fiber case is 

striking. From a communications standpoint such FWM contributions are undesirable and 

one of our future research problems involves how to control/eliminate this phenomenon. It 

is also worth noting that such distinct FWM contributions might be a positive feature e.g. 

in a situation where one may wish to create a significant signal in an adjacent frequency 

channel. 
This work is relevant for researchers interested in WDM fiber optic communications. As 

such, this has important applications to both defense and civilian technologies. It also has 

ramifications in fluid dynamics and indeed any area where the NLS equation is central in 

the description of the physical phenomena. 
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ii)   Multidimensional Nonlinear Wave Equations and the Inverse Scattering 

Transform 

The inverse scattering transform (1ST) allows one to linearize and obtain global infor- 

mation about certain physically significant nonlinear wave equations. For example, in one 

dimension, 1ST applies to such important equations as the nonlinear Schrödinger equation 

(NLS) which is a centrally important equation in nonlinear optics and ferromagnetics; the 

Korteweg-deVries (KdV) equation which governs long waves in free surfaces (with or without 

surface tension) and internal stratified waves in fluids; and the sine-Gordon equation which 

models waves in Josephson junctions in superconductors etc. 
Particularly significant is that the 1ST method can also be applied to certain multidimen- 

sional equations in two space-one time dimension (2+1), a number of which are physically 

important. In 2+1 dimensions, well-known physically important equations solvable by 1ST 
are the Kadomtsev-Petviashvili (KP) equation, the Davey-Stewartson (DS) system, and the 

three wave interaction equations in two dimensions. 
In our earlier work we found solutions to a variety of initial value problems with rapid 

decay at infinity.  An important special class of solutions which we obtained are "lumps"; 

i.e. two dimensional solitons/coherent structures which decay in all directions.   In recent 

work we have found a new class of coherent structures which have more complicated inter- 

action properties than the previously known lump solutions. Since the method of solution 

involves inverse scattering, we have been able to relate these new solutions to novel dis- 
crete eigenstates/eigenvalues-spectral singularities of the associated linear scattering prob- 

lem, which in this case is the time dependent Schrödinger equation.   Spectrally speaking 

these new solutions correspond to multiple poles associated with certain eigenfunctions of 

the nonstationary Schrödinger problem. The usual spectral description of, say, a two lump 

solution has two pairs of poles of the eigenfunction symmetrically located in the upper/lower 

half planes. We have shown, both by taking coalescing limits of the known lump solutions 

and by direct analysis of the scattering problem, that there are novel spectral configurations 

which have multiple poles in one of the half planes and simple poles in the other.   This 

analysis has yielded new solutions to both the scattering problem, in this case the time 

dependent multidimensional Schrödinger problem, as well as for the KP equation when the 
correct parameterization for time is included. The solutions of the inverse scattering problem 
represent new "bound" state eigenfunctions and corresponding "refiectionless" potentials of 

the time dependent Schrödinger problem.   The solutions of the KP equation are the time 

evolution of the potentials associated with the scattering problem.  They correspond to a 

pair of lump type solutions which interact in an unusual way, not in the standard manner of 



two lumps which interact without phase shift. 
This work is important for anyone studying multidimensional nonlinear wave equations 

possessing coherent solutions. The underlying wave equations arise frequently in application 

as do the direct and inverse scattering problems. Both issues, solutions of mutlidimensional 

nonlinear wave equations and inverse scattering, have defense and civilian applications. 

Prom another point of view, we have obtained a number of general results about the KP 

equations and related higher nonlinear modified KP equations—called the generalized KP 

(GKP) equation. 

i) It turns out that the GKP equation generically has a discontinuous time derivative 

at the initial instant. In a recent paper (see paper #14 in 'publications accepted in 

journals' section of this report) we discuss this point and demonstrate how the temporal 

discontinuity is "resolved" by embedding the KP equation into a Boussinesq equation. 

This is analogous to way shock waves are "smoothed" by embedding an inviscid Burgers 

equation in a viscous Burgers equation. 

ii) It turns out that in the modified KP—or more generally the GKP equation with cubic 
or higher order nonlinearities, the solitary wave solutions are unstable. In all cases we 

know of, such an instability results in wave collapse in finite time. We have developed 
a perturbation method which suggests that finite time blow up occurs. Our numerical 

simulations confirm this scenario. 

Our studies of multidimensional integrable systems continue, with special attention di- 

rected at 2+1 discrete systems such as the 2+1 Toda system which is a partially discrete 

system (2 continuous, one discrete) variable. For the well known 2+1 Toda and Volterra 

equations we have recently obtained multidimensional lump type solitons, which decay in all 

directions. We are interested in obtaining fully discrete nonlinear wave systems which can 
be used for computational purposes as well as providing models of multidimensional lattice 

dynamics. 

iii) Computational and Effective Chaos 

We have been investigating the computational simulations of certain nonlinear equations 

analyzable by the inverse scattering transform (1ST). We use these equations as prototypes 

since they are physically interesting systems about whose solutions and properties we have 

concrete analytical understanding. On the other hand, for the periodic boundary value 

problems we are considering, the analytical solutions are extremely complicated. Computa- 

tionally speaking, these equations provide a vehicle by which: i) computational schemes can 
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be compared and ii) errors in the schemes can be detected. We have demonstrated that in 

certain circumstances computational chaos results. Since we are interested in the long time 

numerical integration of nonlinear systems, there is no existing theory of error analysis which 

describes the phenomena. We have been aided by the fact that we have obtained exact 1ST 

based discrete analogues of many of the continuous systems which, in practice, have proven 

to be excellent computational schemes. 
The paradigm is the focusing NLS equation with periodic boundary conditions: 

iut + uxx + 2\u\2u = 0, 

u(x,t) =u(x + L,t). 

As mentioned above, we have a corresponding integrable discrete scheme, 

Un+X + «n-1 - ^n .2( ,1=0 

where h is the mesh size. For focusing NLS, there is a class of initial conditions which are 

linearly unstable. By changing a parameter in the initial condition, we can excite a number of 

linearly unstable modes; we call the number of unstable modes M. In our earlier work we have 

shown that a) for small values of M, standard numerical schemes (non-IST based schemes) 

break down and computational chaos results from truncation errors; b) for large values of 

M, the numerical chaos can even be induced by roundoff errors; c) for even initial data the 
chaos is explained by the demonstration of continual but temporally irregular crossings of 
unperturbed homoclinic manifolds (i.e. crossing of the NLS homoclinic manifolds).  These 

manifolds are complicated. They have 2" "sides" and allow for an extremely rich dynamical 

evolution; d) in our recent work, we have studied the case when the initial data is not even. 

In this latter situation, which is the generic case, the phase space is no longer foliated and 

we find that the solution to the perturbed NLS system can evolve from one "side" of the 

homoclinic manifold to another without crossing an unperturbed homoclinic manifold. The 

chaos we have observed in the latter case is depicted by irregular and continual changes of 

the velocity of the underlying periodic waves. The case of even initial data is typified by the 

periodic waves being essentially standing waves (no left /right velocity). 
We believe that the computational chaos we have observed is, in fact, a manifestation 

of an important physical effect which should be observable in laboratory experiments. The 

NLS equation is well-known to govern the modulation of water waves in moderate-deep 

water, and modulational instability in nonlinear optics. When the waves are excited in a 

periodic manner, with small modulation, then the NLS equation with periodic initial data 

described above is the relevant equation. The Benjamin-Feir/modulational instability only 



says that there are M unstable modes in the linearized version of the NLS equation.  The 

NLS equation governs the long time evolution of the instability process. As mentioned above, 

our results regarding NLS, based on the extensive numerical and associated analysis, show 

that there is a significant difference in the long time dynamics depending on whether one 

excites a small number of unstable modes M (e.g M=l,2) or a large number (e.g M=5,6). 

In the former case, the dynamical evolution is explainable (and repeatable) in the context 

of NLS theory.  In the latter situation, where round off error induces numerical chaos, the 

NLS equation is itself highly unstable in much the same way as coupled pendula nearly 

in the "up-position" are highly unstable. In the latter case, we believe that small physical 

perturbations should be capable of causing dynamical chaos in the evolution. In effect we are 

experimentally and dynamically close to the homoclinic manifold which induces the chaotic 

dynamics.  We have discussed our results in detail with J. Hammack who is a well-known 

water wave experimentalist.   He is planning on carrying out the experiments.  We believe 

that these experiments will lead to interesting and important conclusions about the long 

time behavior of the Benjamin-Feir/modulational instabilities when the underlying waves 

are generated in a modulated periodic manner. 

iv)   Nonlinear Waves in Ferromagnetic Films 

We have been studying a class of nonlinear waves in ferromagnetic media. Our motivation 

for these studies comes from the extensive experiments by Professor Carl Patton and his 

group in the Physics Department at Colorado State University. Patton's group has been 

investigating the generation and evolution of wave pulses which behave like solitons in thin 

film ferromagnets. In these experiments, an yttrium iron garnet (YIG) film is magnetized to 

saturation causing the dipoles of the ferromagnet to align. An external microwave signal is 

applied to the film. If the power is large enough, solitons are observed to form and propagate 

through the film. 
We are interested in developing an effective theory governing the propagation of waves in 

such ferromagnetic media. There is an analogy with nonlinear optics. In optics the nonlin- 
earity arises from the fact that the polarization is a nonlinear function of the electromagnetic 

field. In these magnetic systems the role of the polarization is played by the magnetization 

and the electric field is replaced by the magnetic field. The nonlinearity of the magnetic 

system is governed to leading order by a torque equation which describes the precession of 

dipoles in the magnetic media. The difference between optics and magnetics is important 

since the way the nonlinearity arises has a major effect on the amplitude equations (i.e. NLS 

type equations). The fact that we are modeling films means that we must consider three 

regions: two outside the film and the film itself. Outside the film we take the magnetostatic 
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approximation of Maxwell's equations; inside the film is where the nonlinearity (the torque 

equation) is applied in addition to the magnetostatic approximation of Maxwell's equations. 

The calculations turn out to be rather lengthy, but tractable. 
Since Patton's experiments currently have a moderate transverse scale, our first efforts 

involve obtaining one dimensional amplitude equations. Let the film be aligned perpendicular 

to, say, the ^-direction, and the propagation of the magnetic spin waves be along the longest 

direction, which we call the x-direction. The direction transverse to x,z is the y-direction. 

The case'we have considered first is when the applied saturating field is in the ^-direction. 

This is referred to as forward volume waves.   There are two other cases of experimental 

interest; namely the so called backward volume case where the saturating field is applied 

in the x-direction, and the surface wave case where the saturating field is applied in the y- 

direction. With a student S. Mock, supported by an AFOSR AASERT grant, we have derived 
an amplitude equation governing modulated weakly nonlinear wavepackets for the forward 

volume case; the governing equation is the NLS equation.    Earlier workers also derived 

an NLS equation for this situation. However, their work was based entirely on presuming a 

suitable form for the nonlinear dispersion relation; they did not derive the equation from first 

principles. Our calculations show that the coefficients in our NLS equation are significantly 

different from those derived earlier.   We are comparing the experimental situation to our 

NLS system in order to deduce whether the difference in coefficients imply an improved 

fit to the laboratory data.   Potential device applications envisaged are radar applications 

(the frequency range in which these signals operate is in the microwave regime) and the 

development of special purpose chips.   Both of these applications have important defense 

and civilian implications. 
We also have studied a different situation that can arise in the associated ferromagnetic 

systems; namely a case of a bulk system (thick ferromagnetic material) where the ferromag- 

netic region is assumed to dominate the entire space. It turns out that there is a relevant 

long wave regime in which the modified KP equation (ie GKP where the nonlinear is cubic) 

results (see also the discussion above).We believe that in this parameter regime localized 

waves will be strongly unstable and focussing will occur. 
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South Wales, Australia, "Computational Chaos in Integrable Systems", March 

27-28, 1996. 

24. Department of Mathematics, University of Sydney, Australia, "100 years of Inte- 

grability", April 3, 1996. 

25. Institute for Theoretical Physics, summer school session on "Painleve One Cen- 

tury Later", Cargese, Corsica, "Painleve Equations, Darboux-Halphen Systems 

and the Inverse Transform Method", 4 1/2 hours, June 3-12, 1996. 

26. Workshop on Symmetries and Integrability, Kent University, Canterbury, Eng- 
land, "Solutions to the Time Dependent Schrödinger and the Kadomtsev-Petviashvili 

Equations", July 1-5, 1996. 

27. Workshop in Nonlinear Optics, Mathematics Department, University of Arizona, 

Tucson, Arizona, "Wavelength Division Multiplexed Solitons and Four Wave Mix- 

ing" , October 10-12, 1996. 

28. International Symposium on Advances in soliton theory and its applications-The 
30th anniversary of the Toda lattice, Yokohama National University, Yokohama, 
Japan, "On a New Class of Lump Type Solutions to the Kadomtsev-Petviashvili 

and Nonstationary Schrödinger Equations", December 1-4, 1996. 

• Consultative And Advisory Functions To Other Laboratories And Agencies 

• Transitions 

NEW DISCOVERIES, INVENTIONS, OR PATENT DISCLOSURES 

None 

HONORS/AWARDS 

1. Sloan Foundation Fellowship: 1975-1977 

2. John Simon Guggenheim Fellowship: 1984-85 

3. University of Colorado Council of Research and Creative Work Fellowship: 1994-95 
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